Лабораторные весы применяются в научной сфере и в производственных отраслях, например, в фармацевтике и ювелирном деле. Мы расскажем, как определить точность лабораторных весов, и рассмотрим критерии выбора на конкретных примерах.
Проблемы при определении точности весов
Главным критерием для выбора аналитических весов является высокая точность измерений. Для оценки точности используются следующие параметры:
- погрешность при взвешивании;
- стандартная и расширенная неопределенность;
- возможный диапазон измерений.
Но в методических рекомендациях часто содержатся требования к классу точности прибора, а не к фактической точности взвешивания. При этом составители методики приводят ссылку на ГОСТ, действующий во время составления рекомендаций. Однако стандарты, разработанные в СССР, не подходят для нашего времени.
В СССР все произведенные весы соответствовали единому стандарту. Для выбора нужно было знать класс точности. В наши дни производители применяют стандарты в добровольном порядке. На рынке присутствует множество устройств, характеристики которых не соответствуют ГОСТу. Подобные устройства проходят утверждение в Росстандарте после серии испытаний.
Существуют и лабораторные весы, которые не соответствуют ГОСТу и не проходили утверждение в Росстандарте. Использовать такие приборы можно только для измерений, которые не подлежат государственному регулированию.
Для чего нужна калибровка оборудования
Фактическая точность весов не зависит от соответствия ГОСТу или утверждения в Росстандарте. В международной практике большинство исследований проводятся на калиброванных приборах, класс которых не соответствует общепринятым стандартам.
Именно калибровка, а не наличие сертификатов, гарантирует точный результат взвешивания. При калибровке не имеет значения погрешность, указанная в документах. Целью калибровки является определение реальных показателей. В процессе калибровки устанавливается неопределенность измерений и поправки на систематические погрешности.
ГОСТ Р ИСО/МЭК 17025-2006 разрешает лабораториям использовать не только весы, прошедшие поверку, но и калиброванные приборы. На калиброванных приборах возможно измерение массы маленьких навесок.
Например, когда относительная погрешность не превышает 1%, масса навески не должна быть менее 100 мг. Когда относительная погрешность не более 0,1%, допустимая масса груза должна быть не менее 1 г.
Выбор лабораторных весов по рекомендациям
Рассмотрим типичные формулировки из нормативно-методических документов, которые содержат требования к точности прибора или точности измерений. Для оценки корректности формулировок мы будем разбирать конкретные примеры.
Пример №1
Формулировка: «Лабораторные весы, соответствующие ГОСТ Р 53228-2008».
В этой формулировке нет конкретных требований к точности прибора или точности взвешивания. Упоминание любого из стандартов в методической документации значительно уменьшает число вариантов. Из списка исключаются устройства, не прошедшие сертификацию и поверку.
Приведенный ГОСТ содержит перечень требований к весовому оборудованию, составленный с учетом всех возможных погрешностей. В этот перечень входят:
- Требования к конструкции прибора.
- Возможные погрешности в допусках.
- Описание допустимых методов работы.
- Допустимые условия эксплуатации.
- Требования к квалификации персонала.
Стандарт включает методы оценки выполнения всех перечисленных требований. Текст стандарта занимает 140 листов. Основой для написания стандарта стал перевод рекомендации Р76 (1)-2006 от Международной организации законодательной метрологии.
Ссылка на упомянутый стандарт бесполезна: он содержит требования к идеальным устройствам. ГОСТ написан для узкого круга специалистов, которые занимаются разработкой, изготовлением, тестированием весов. Описанные в нем стандарты пока не достижимы на практике, но возможно максимально к ним приблизится.
Согласно упомянутому ГОСТу, класс точности весов зависит от основной величины «е». Величина «е» показывает предел допускаемой погрешности, который при эксплуатации в 2 раза выше, чем при поверке.Как величина «е» связана с классом точности приборов, показано в таблицах.
Таблица №1 — «Определение класса точности весового оборудования».
Таблица №2 — «Зависимость погрешности от уменьшения или увеличения нагрузки».
Пример №2
Формулировка: «Весы, соответствующие II классу точности согласно ГОСТ Р 53228-2008».
Таблица №1 показывает, что к II классу точности относятся весы с «е» не менее 1 мг. Лаборатория может закупить приборы с е = 1 мг или е = 10 мг. Требование будет выполняться в обоих случаях. Но погрешность устройств будет отличаться в 10 раз. Для ограничения выбора следует указывать не только класс точности, но и допустимое значение величины «е».
Пример №3
Формулировка: «Весы, соответствующие ГОСТ Р 53228-2008, точность которых равна 0,0001 г.»
По РМГ 29-99, точность весов — характеристика, которая указывает близость погрешности к нулю. Чем меньше значение погрешности, тем выше точность устройства. Согласно этому определению, термин «точность» не может использоваться в связке с каким-либо числом.
Возможно, под термином «точность» составители рекомендаций имели в виду предел допустимой погрешности 0,0001 г. = 0,1 мг. Но в таком случае выполнить условие невозможно. В приведенном ГОСТ минимальный предел допустимой погрешности составляет 1 мг. (см. таблицу №1).
Предположение о том, что в формулировке подразумевается цена деления, является еще менее вероятным. Цена деления не является характеристикой, которая указывает на точность прибора.
Пример №4
Формулировка: «Лабораторные весы II класса точности по ГОСТ 24104-88Е».
Упомянутый ГОСТ действовал до 1 июля 2002 года. Этот стандарт связывает предел допускаемой погрешности с двумя характеристиками:
- класс точности прибора;
- наибольший предел взвешивания.
Таблица №3 — «Зависимость погрешности от НПВ прибора».
Допустим, что в одной лаборатории грузы массой 1 г. взвешивают на весах с НПВ = 1 г. В другой лаборатории для этого используют прибор с НПВ = 200 г. При взвешивании грузов с одинаковой массой погрешность будет отличаться в 30 раз. Но формально измерения соответствуют единому стандарту.
Кроме того, в редакциях ГОСТ 24104 от 1980, 1988 и 2001 гг. содержались некорректные значения пределов допускаемой погрешности (для устройств I класса точности). Некорректность с точки зрения метрологии заключалась в отсутствии стандартных гирь, которые смогли бы обеспечивать заявленные погрешности. А также в том, что обозначенные пределы учитывали только случайную составляющую.
Пределы погрешностей в устаревших редакциях были равны среднеквадратическому отклонению показаний, умноженному на 3. Но эта формула верна только в одном случае: если проводить все измерения с образцовой гирей, как при поверке или калибровке. Формула не учитывает реальную погрешность гирь, которые участвуют в работе, и погрешность неравноплечести.
Пример №5
Формулировка: «Весы типа ВЛР-200 или другой модели, не уступающей им по метрологическим характеристикам».
Требование выглядит простым: в нем указана конкретное оборудование, которое можно закупить для лаборатории. Кажется, что нужно значение погрешности можно посмотреть в характеристиках прибора.
Но на самом деле ВЛР-200 — не электронные, а механические весы. Указанная модель относится к равноплечим приборам. Для взвешивания грузов требуется использовать комплект гирь и брать поправку на погрешность.
Как работать с прибором ВЛР-200:
- На одну чашу ставится груз, а на другую — гири, которые могут его уравновесить. При этом возникает погрешность неравноплечести.
- Для исключения погрешности неравноплечести выполняется повторное взвешивание того же груза.
- Точность измерений определяется по методу Борда, Гаусса или Менделеева. Для расчетов можно использовать номинальную или действительную массу гирь с учетом поправок.
Чтобы рассчитать длину носителя, нужно сложить длину стикера с длиной промежутка и умножить результат на число стикеров. Расчет для приведенного примера выглядит так: (40+2) х 600 = 25200 мм или 25,2 м.
Возможная длина риббона: 74, 300 и 450 м. Чтобы рассчитать соотношение, следует разделить длину риббона на рассчитанную длину носителя. Например, одного риббона длиной 300 м хватит для печати на 300 / 25,2 = 11,9 рулонов. Следовательно, при закупке расходных материалов для принтера нужно соблюдать пропорцию 1 к 12.
Таблица №4 — «Определение погрешности неравноплечести».
Таблица показывает, что погрешность при взвешивании грузов массой до 25 г. может различаться в 6 раз.
Пример №6
Формулировка: «Весы с относительной погрешностью не более 0,1% и наличием государственной поверки».
Допустим, возможная масса груза от 1 г. до 100 г., а масса посуды не превышает 40 г. В таком случае при взвешивании грузов массой 1 г. допускается абсолютная погрешность в 1 мг. Цена одного деления должна быть в 5-10 раз меньше, чем абсолютная погрешность: 0,1 мг. или 0,2 мг. На практике весы с ценой одного деления 0,2 мг. встречаются крайне редко.
Максимальный предел взвешивания не должен быть менее 140 грамм (для грузов массой 100 г. и лабораторной посуды массой 40 г.) Кроме перечисленных характеристик, при покупке весов нужно обратить внимание на наличие сертификата о государственной поверке.
Пример №7
Формулировка: «Предел относительной неопределенности составляет 0,1% для 3-кратного среднеквадратического отклонения из 10 результатов, при этом доверительная вероятность равна 99,73%».
Выбрать подходящие весы можно по характеристикам, указанным производителем. Для подбора оборудования подходит таблица №5.
Таблица №5 — «Определение минимальной массы навески».
Для оценки неопределенности измерений следует провести калибровку весов в лаборатории. На отклонение показаний влияют:
- Условия внешней среды: температура, влажность.
- Наличие сквозняка: для повышения точности нужно установить ветрозащитный экран.
- Выбранный критерии стабильности результатов в меню.
- Квалификация оператора: степень его аккуратности при работе.
- Используемая посуда: чем меньше вес посуды, тем меньше будет отклонение.
При относительной неопределенности 0,1% и доверительной вероятности 99,73% минимальная навеска равна 300 мг. Если значение доверительной вероятности равно 95,54%, то минимальная навеска составляет 200 мг. Если в лаборатории придется взвешивать грузы с массой 1 мг, нужно будет использовать ультрамикровесы с ценой одного деления 0,0001 мг.
Выводы
При выборе лабораторных весов главным критерием служит погрешность или неопределенность измерений. Оба критерия могут быть абсолютными или относительными. Если сфера проведения измерений подлежит государственному регулированию, для выбора используются установленные требования по погрешности. Если измерения не регулируются государством, то для выбора весов можно использовать стандартную или расширенную неопределенность.
Приемлемой для указания в нормативно-методических документах является формулировка: Электронные весы, обеспечивающие в диапазоне от … до … г. относительную погрешность (или относительную неопределенность) измерений не более … %.